Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.07.25.550568

ABSTRACT

Elk (Cervus canadensis) and mule deer (Odocoileus hemionus) were experimentally evaluated for susceptibility to SARS-CoV-2. Elk did not shed infectious virus but produced low-level serological responses. Mule deer shed and transmitted virus in addition to mounting pronounced serological responses; they could therefore play a role in the epidemiology of SARS-CoV-2.

2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.20.492852

ABSTRACT

ABSTRACT Introduction E-cigarette vaping has become a major portion of nicotine consumption, especially for children and young adults. Although it is branded as a safer alternative to cigarette smoking, murine and rat models of sub-acute and chronic e-cigarette vaping exposure have shown many pro-inflammatory changes in the respiratory tract. An acute vaping exposure paradigm has not been demonstrated in the golden Syrian hamster, and the hamster is a readily available small animal model that has the unique benefit of becoming infected with and transmitting SARS-CoV-2 without genetic alteration to the animal or virus. Methods Using a two-day, whole-body vaping exposure protocol in male golden Syrian hamsters, we evaluated serum cotinine, bronchoalveolar lavage cells, lung and nasal histopathology, and gene expression in the nasopharynx and lung through RT-qPCR. Depending on the presence of nonnormality or outliers, statistical analysis was performed by ANOVA or Kruskal-Wallis tests. For tests that were statistically significant (p-value <0.05), post-hoc Tukey-Kramer and Dunn’s tests, respectively, were performed to make pairwise comparisons between groups. Results In nasal tissue, RT-qPCR analysis revealed nicotine-dependent increases in genes associated with type 1 inflammation (CCL-5 and CXCL-10), fibrosis (TGF-β), and a nicotine-independent decrease in the vasculogenesis/angiogenesis gene VEGF-A. In the lung, nicotine-dependent increases in the expression of genes involved in the renin-angiotensin pathway (ACE, ACE2), coagulation (tissue factor, Serpine-1), extracellular matrix remodeling (MMP-2, MMP-9), type 1 inflammation (IL-1β, TNF-α, and CXCL-10), fibrosis (TGF-β and Serpine-1), oxidative stress response (SOD-2), neutrophil extracellular traps release (ELANE), and vasculogenesis and angiogenesis (VEGF-A) were identified. Conclusion To our knowledge, this is the first demonstration that the Syrian hamster is a viable model of e-cig induced inhalational injury. In addition, this is the first report that e-cig vaping with nicotine can increase tissue factor gene expression in the lung. Our results show that even an acute exposure to e-cigarette vaping causes significant upregulation in the respiratory tract of pathways involving the renin-angiotensin system, coagulation, extracellular matrix remodeling, type 1 inflammation, fibrosis, oxidative stress response, NETosis, vasculogenesis, and angiogenesis.


Subject(s)
Smoke Inhalation Injury , Tobacco Use Disorder
3.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1213395.v1

ABSTRACT

COVID-19 results in increased expression of inflammatory cytokines, but inflammation-targeting clinical trials have yielded poor to mixed results. Our studies of other disorders with an inflammatory component, including Alzheimer’s disease, chemobrain, Down syndrome, normal aging, and West Nile Virus infection, showed that treatment with the ‘pro-inflammatory’ cytokine granulocyte-macrophage colony stimulating factor (GM-CSF) in humans or mouse models alleviated clinical, behavioral, and pathological features. We proposed that human recombinant GM-CSF (sargramostim) be repurposed to promote both the innate and adaptive immune responses in COVID-19 to reduce viral load and mortality1. Here, we report the results of a placebo-controlled study of GM-CSF in human ACE2 transgenic mice inoculated intranasally with SARS-CoV2 virus, a model of COVID-19. Infection resulted in high viral titers in lungs and brains and over 85% mortality. GM-CSF treatment beginning one day after infection increased anti-viral antibody titers, lowered mean lung viral titers proportionately (p=0.0020) and increased the odds of long-term survival by up to 5.8-fold (p=0.0358), compared to placebo. These findings suggest that, as an activator of both the innate and adaptive immune systems, GM-CSF/sargramostim may be an effective COVID-19 therapy with the potential to protect from re-infection more effectively than treatment with antiviral drugs or monoclonal antibodies.


Subject(s)
Alzheimer Disease , West Nile Fever , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.03.05.434135

ABSTRACT

SARS-CoV-2 spillback from humans into domestic and wild animals has been well-documented. We compared variants of cell culture-expanded SARS-CoV-2 inoculum and virus recovered from four species following experimental exposure. Five nonsynonymous changes in nsp12, S, N and M genes were near fixation in the inoculum, but reverted to wild-type sequences in RNA recovered from dogs, cats and hamsters within 1-3 days post-exposure. Fourteen emergent variants were detected in viruses recovered from animals, including substitutions at spike positions H69, N501, and D614, which also vary in human lineages of concern. The rapidity of in vitro and in vivo SARS-CoV-2 selection reveals residues with functional significance during host-switching, illustrating the potential for spillback reservoir hosts to accelerate evolution, and demonstrating plasticity of viral adaptation in animal models.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.01.21.427629

ABSTRACT

Wild animals have been implicated as the origin of SARS-CoV-2, but it is largely unknown how the virus affects most wildlife species and if wildlife could ultimately serve as a reservoir for maintaining the virus outside the human population. Here we show that several common peridomestic species, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, we demonstrate that cottontail rabbits, fox squirrels, Wyoming ground squirrels, black-tailed prairie dogs, house mice, and racoons are not susceptible to SARS-CoV-2 infection. Our work expands upon the existing knowledge base of susceptible species and provides evidence that human-wildlife interactions could result in continued transmission of SARS-CoV-2.


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.09.20187625

ABSTRACT

The inability to communicate how infectious diseases are transmitted in human environments has triggered avoidance of interactions during the COVID-19 pandemic. We define a metric, Effective ReBreathed Volume (ERBV), that encapsulates how infectious pathogens transport in air. This measure distinguishes environmental transport from other factors in the chain of infection, thus allowing quantitative comparisons of the riskiness of different situations for any pathogens transported in air, including SARS-CoV-2. Particle size is a key factor in transport, removal onto surfaces, and elimination by mitigation measures, so ERBV is presented for a range of exhaled particle diameters: 1 m, 10 m, and 100 m. Pathogen transport is enhanced by two separate but interacting effects: proximity and confinement. Confinement in enclosed spaces overwhelms proximity after 10-15 minutes for all but the largest particles. Therefore, we review plausible strategies to reduce the confinement effect. Changes in standard ventilation and filtration can reduce person-to-person transport of 1-m particles (ERBV1) by 13-85% in residential and commercial situations. Deposition to surfaces competes with intentional removal for 10-m and 100-m particles, so the same interventions reduce ERBV10 by only 3-50%, and ERBV100 is unaffected. Determining transmission modes is critical to identify intervention effectiveness, and would be accelerated with prior knowledge of ERBV. When judiciously selected, the interventions examined can provide substantial reduction in risk, and the conditions for selection are identified. The framework of size-dependent ERBV supports analysis and mitigation decisions in an emerging situation, even before other infectious parameters are well known.


Subject(s)
COVID-19
7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.28.120998

ABSTRACT

The pandemic caused by SARS-CoV-2 has reached nearly every country in the world with extraordinary person-to-person transmission. The most likely original source of the virus was spillover from an animal reservoir and subsequent adaptation to humans sometime during the winter of 2019 in Wuhan Province, China. Because of its genetic similarity to SARS-CoV-1, it is likely that this novel virus has a similar host range and receptor specificity. Due to concern for human-pet transmission, we investigated the susceptibility of domestic cats and dogs to infection and potential for infected cats to transmit to naive cats. We report that cats are highly susceptible to subclinical infection, with a prolonged period of oral and nasal viral shedding that is not accompanied by clinical signs, and are capable of direct contact transmission to other cats. These studies confirm that cats are susceptible to productive SARS-CoV-2 infection, but are unlikely to develop clinical disease. Further, we document that cats develop a robust neutralizing antibody response that prevented re-infection to a second viral challenge. Conversely, we found that dogs do not shed virus following infection, but do mount an anti-viral neutralizing antibody response. There is currently no evidence that cats or dogs play a significant role in human exposure; however, reverse zoonosis is possible if infected owners expose their domestic pets during acute infection. Resistance to re-exposure holds promise that a vaccine strategy may protect cats, and by extension humans, to disease susceptibility.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL